import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import Markdown
= pd.read_csv('dfg.csv')
dfg = pd.read_csv('df.csv')
df
= ['country','population','population_2015','totalproviders','totalproviders2015','totalproviders_cap','totalproviders2015_cap','totalproviders_cap_diff','totalprovidersdiff','certified_specialist','provider_number','totalpap','physicians2015','totalpap_cap','physicians2015_cap', 'totalnpap','nurses2015','totalnpap_cap','nurses2015_cap','popdiff']
cols = ['country','name','email','role','certified_specialist','provider_number','nurse_num','nurse_num2','nurse_num3','nurse_num4','other_1']
printinfocols
def countryinvestigation(country):
= dfg[dfg['country']==country][cols]
df ="whitegrid")
sns.set_theme(style= plt.subplots(3,3,figsize=(10,10))
fig, ax
# Paps
= df[['physicians2015', 'certified_specialist','provider_number','totalpap']].melt()
pap ='variable',y='value',data=pap,ax=ax[0,0])
sns.barplot(x0,0].bar_label(ax[0,0].containers[0])
ax[#set xtick rotation
0,0].tick_params(axis='x', rotation=30)
ax[
# Npaps
= df[['nurses2015', 'totalnpap']].melt()
npap ='variable',y='value',data=npap,ax=ax[0,1])
sns.barplot(x0,1].bar_label(ax[0,1].containers[0])
ax[
# Total Providers
= df[['totalproviders2015', 'totalproviders']].melt()
providers ='variable',y='value',data=providers,ax=ax[0,2])
sns.barplot(x0,2].bar_label(ax[0,2].containers[0])
ax[
# Pap Cap
= df[['physicians2015_cap', 'totalpap_cap']].melt()
papcap ='variable',y='value',data=papcap,ax=ax[1,0])
sns.barplot(x1,0].bar_label(ax[1,0].containers[0])
ax[
# Npap Cap
= df[['nurses2015_cap', 'totalnpap_cap']].melt()
npapcap ='variable',y='value',data=npapcap,ax=ax[1,1])
sns.barplot(x1,1].bar_label(ax[1,1].containers[0])
ax[
# Total Providers Cap
= df[['totalproviders2015_cap', 'totalproviders_cap']].melt()
providerscap ='variable',y='value',data=providerscap,ax=ax[1,2])
sns.barplot(x1,2].bar_label(ax[1,2].containers[0])
ax[
# Population
= df[['population_2015', 'population']].melt()
population ='variable',y='value',data=population,ax=ax[2,0])
sns.barplot(x2,0].bar_label(ax[2,0].containers[0])
ax[
#set xlabel and ylabel to ""
for ax in fig.axes:
'')
ax.set_xlabel('')
ax.set_ylabel(
# Adjust subplot layout
plt.tight_layout()
plt.show()
plt.close()
def print_country_info(country):
= df[df['country']==country][printinfocols].set_index('name').T
t1 return t1
=df.sort_values(by=['country','Region'])
df= df[df['Region']=='South-East Asia Region']
dff '# South-East Asia Region'))
display(Markdown(for i in dff['country'].unique():
f'## {i}'))
display(Markdown(
display(print_country_info(i)) countryinvestigation(i)
South-East Asia Region
Bangladesh
name | Prof Dr Kawsar Sardar |
---|---|
country | Bangladesh |
kawsardr@yahoo.com | |
role | Member and part of leadership |
certified_specialist | 1839.0 |
provider_number | 100.0 |
nurse_num | NaN |
nurse_num2 | NaN |
nurse_num3 | NaN |
nurse_num4 | NaN |
other_1 | NaN |
Bhutan
name | Jampel Tshering | Jampel Tshering |
---|---|---|
country | Bhutan | Bhutan |
jtshering10@gmail.com | jtshering10@gmail.com | |
role | Member and part of leadership | Member and part of leadership |
certified_specialist | 15.0 | 11.0 |
provider_number | NaN | NaN |
nurse_num | 30.0 | NaN |
nurse_num2 | NaN | NaN |
nurse_num3 | NaN | NaN |
nurse_num4 | NaN | NaN |
other_1 | NaN | NaN |
India
name | PROF. NAVEEN MALHOTRA |
---|---|
country | India |
drnaveenmalhotra@yahoo.co.in | |
role | Member and part of leadership |
certified_specialist | 60000.0 |
provider_number | NaN |
nurse_num | NaN |
nurse_num2 | NaN |
nurse_num3 | NaN |
nurse_num4 | NaN |
other_1 | NaN |
Indonesia
name | I Putu Pramana Suarjaya | Dra.Dorce Tandung, MSi |
---|---|---|
country | Indonesia | Indonesia |
putupram@gmail.com | ochetanalsa@yahoo.com | |
role | Member and part of leadership | Member and part of leadership |
certified_specialist | 4134.0 | 4134.0 |
provider_number | NaN | NaN |
nurse_num | 4000.0 | 4000.0 |
nurse_num2 | NaN | NaN |
nurse_num3 | NaN | NaN |
nurse_num4 | NaN | NaN |
other_1 | NaN | NaN |
Maldives
name | Dusooma Abdul Razzag |
---|---|
country | Maldives |
dusoomaa@gmail.com | |
role | Member and part of leadership |
certified_specialist | 48.0 |
provider_number | NaN |
nurse_num | NaN |
nurse_num2 | NaN |
nurse_num3 | NaN |
nurse_num4 | NaN |
other_1 | NaN |
Myanmar
name | NI NI AYE |
---|---|
country | Myanmar |
dr.niniaye.mm@gmail.com | |
role | Member and part of leadership |
certified_specialist | 684.0 |
provider_number | NaN |
nurse_num | 0.0 |
nurse_num2 | NaN |
nurse_num3 | NaN |
nurse_num4 | NaN |
other_1 | NaN |
Nepal
name | Navindra Raj Bista |
---|---|
country | Nepal |
navindrarajbista@hotmail.com | |
role | Member and part of leadership |
certified_specialist | 400.0 |
provider_number | NaN |
nurse_num | NaN |
nurse_num2 | NaN |
nurse_num3 | NaN |
nurse_num4 | NaN |
other_1 | NaN |
Sri Lanka
name | Kumudini Ranatunga | Prof P. T. R. Makuloluwa |
---|---|---|
country | Sri Lanka | Sri Lanka |
ranatungakumi@gmail.com | ptr_makuloluwa@hotmail.com | |
role | Member but not part of leadership | Member and part of leadership |
certified_specialist | 336.0 | 207.0 |
provider_number | NaN | 1352.0 |
nurse_num | NaN | NaN |
nurse_num2 | NaN | NaN |
nurse_num3 | NaN | NaN |
nurse_num4 | NaN | NaN |
other_1 | NaN | NaN |
Thailand
name | Phuping Akavipat | Mrs. Suwimon Tangwiwat | Suwimon Tangwiwat |
---|---|---|---|
country | Thailand | Thailand | Thailand |
Ppakvp@hotmail.com | stangwiwat@gmail.com | stangwiwat@yahoo.com | |
role | Member and part of leadership | Member and part of leadership | Member and part of leadership |
certified_specialist | 1300.0 | 1100.0 | 1100.0 |
provider_number | NaN | NaN | NaN |
nurse_num | 5000.0 | 5000.0 | 5000.0 |
nurse_num2 | NaN | NaN | NaN |
nurse_num3 | NaN | NaN | NaN |
nurse_num4 | NaN | NaN | NaN |
other_1 | NaN | Nurse anaesthetist | nurse anesthetist |
Timor-Leste
name | Mingota da Costa Herculano |
---|---|
country | Timor-Leste |
mingotah@gmail.com | |
role | Member but not part of leadership |
certified_specialist | 12.0 |
provider_number | NaN |
nurse_num | 19.0 |
nurse_num2 | NaN |
nurse_num3 | NaN |
nurse_num4 | NaN |
other_1 | NaN |